**r**is the radial coordinate of the point in polar coordinates.**θ**is the angular coordinate of the point in polar coordinates.**x**is the x-coordinate of the point in Cartesian coordinates.**y**is the y-coordinate of the point in Cartesian coordinates.

**(x, y)**and polar coordinates

**(r, θ)**:

## How to Convert from Cartesian to Polar Coordinates

Converting from the Cartesian to the polar coordinates of a point is easy.## Question

What is a point described by the Cartesian coordinates (3, 4) in polar coordinates?## Step-by-Step:

## Find the Radial Coordinate

## 1

## 2

## 3

$$Radial\:coordinate = \sqrt{3^2 + 4^2}$$

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: = \sqrt{(3 \times 3) + (4 \times 4)}$$

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: = \sqrt{9 + 16}$$

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: = \sqrt{25}$$

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: = 5$$

**radial coordinate**is

**5**

## Find the Angular Coordinate

## 4

**Note:**tan

^{−1}is the inverse tangent function.

## 5

$$Angular\:coordinate = tan^{-1} \Big(\frac{4}{3}\Big)$$

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: = tan^{-1} \Big(1.33\Big)$$

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: = 53.1°$$

**angular coordinate**is

**53.1°**

## 6

**5**) found in

**Step 3**goes on the left. The angular coordinate (

**53.1°**) found in

**Step 5**goes on the right.

## Answer:

The Cartesian coordinates (3, 4) become (5, 53.1°) when converted to polar coordinates.## Interactive Widget

Here is an interactive widget to help you learn about converting between Cartesian and polar coordinates.## Why Do the Formulas Work?

Polar coordinates form a right triangle: The radial coordinate is the hypotenuse and the angular coordinate is the angle. Using Pythagoras' Theorem, the square of the hypotenuse is the sum of the squares of the other two sides. The x-coordinate is the adjacent of the triangle and the y-coordinate is the opposite of the triangle.## Square Roots

Finding the radial coordinate**r**requires finding a square root. Apart from the square roots of square numbers, most square roots are not whole numbers. Sometimes it is more exact to just write a number as a square number rather than calculating and rounding it. For example, the square root of 8 can be written as:

## You might also like...

#### Help Us Improve Mathematics Monster

- Do you disagree with something on this page?
- Did you spot a typo?

__this form__.

#### Find Us Quicker!

- When using a search engine (e.g., Google, Bing), you will find Mathematics Monster quicker if you add
**#mm**to your search term.

#### Share This Page

If you like Mathematics Monster (or this page in particular), please link to it or share it with others.

If you do, __please tell us__. It helps us a lot!

#### Create a QR Code

Use our handy widget to create a QR code for this page...or any page.